Search results for "Random environment"
showing 6 items of 6 documents
One- and multi-locus multi-allele selection models in a random environment
1979
We deduce conditions for stochastic local stability of general perturbed linear stochastic difference equations widely applicable in population genetics. The findings are adapted to evaluate the stability properties of equilibria in classical one- and multi-locus multi-allele selection models influenced by random temporal variation in selection intensities. As an example of some conclusions and biological interpretations we analyse a special one-locus multi-allele model in more detail.
Dynamic Phase Diagram of the REM
2019
International audience; By studying the two-time overlap correlation function, we give a comprehensive analysis of the phase diagram of the Random Hopping Dynamics of the Random Energy Model (REM) on time-scales that are exponential in the volume. These results are derived from the convergence properties of the clock process associated to the dynamics and fine properties of the simple random walk in the $n$-dimensional discrete cube.
Random walks in dynamic random environments and ancestry under local population regulation
2015
We consider random walks in dynamic random environments, with an environment generated by the time-reversal of a Markov process from the oriented percolation universality class. If the influence of the random medium on the walk is small in space-time regions where the medium is typical, we obtain a law of large numbers and an averaged central limit theorem for the walk via a regeneration construction under suitable coarse-graining. Such random walks occur naturally as spatial embeddings of ancestral lineages in spatial population models with local regulation. We verify that our assumptions hold for logistic branching random walks when the population density is sufficiently high.
Directed random walk on the backbone of an oriented percolation cluster
2012
We consider a directed random walk on the backbone of the infinite cluster generated by supercritical oriented percolation, or equivalently the space-time embedding of the ``ancestral lineage'' of an individual in the stationary discrete-time contact process. We prove a law of large numbers and an annealed central limit theorem (i.e., averaged over the realisations of the cluster) using a regeneration approach. Furthermore, we obtain a quenched central limit theorem (i.e.\ for almost any realisation of the cluster) via an analysis of joint renewals of two independent walks on the same cluster.
A PHASE TRANSITION FOR LARGE VALUES OF BIFURCATING AUTOREGRESSIVE MODELS
2019
We describe the asymptotic behavior of the number $$Z_n[a_n,\infty )$$ of individuals with a large value in a stable bifurcating autoregressive process, where $$a_n\rightarrow \infty $$ . The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of $$Z_n[a_n,\infty )$$ is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive pr…
Annealed Invariance Principle for Random Walks on Random Graphs Generated by Point Processes in R-d
2016
International audience; We consider simple random walks on random graphs embedded in R-d and generated by point processes such as Delaunay triangulations, Gabriel graphs and the creek-crossing graphs. Under suitable assumptions on the point process, we show an annealed invariance principle for these random walks. These results hold for a large variety of point processes including Poisson point processes, Matern cluster and Matern hardcore processes which have respectively clustering and repulsiveness properties. The proof relies on the use the process of the environment seen from the particle. It allows to reconstruct the original process as an additive functional of a Markovian process und…