Search results for "Random environment"

showing 6 items of 6 documents

One- and multi-locus multi-allele selection models in a random environment

1979

We deduce conditions for stochastic local stability of general perturbed linear stochastic difference equations widely applicable in population genetics. The findings are adapted to evaluate the stability properties of equilibria in classical one- and multi-locus multi-allele selection models influenced by random temporal variation in selection intensities. As an example of some conclusions and biological interpretations we analyse a special one-locus multi-allele model in more detail.

Mathematical optimizationApplied MathematicsModeling and SimulationStochastic difference equationsRandom environmentPopulation geneticsApplied mathematicsLocus (genetics)Stochastic optimizationAlleleQuantitative Biology::GenomicsAgricultural and Biological Sciences (miscellaneous)MathematicsJournal of Mathematical Biology
researchProduct

Dynamic Phase Diagram of the REM

2019

International audience; By studying the two-time overlap correlation function, we give a comprehensive analysis of the phase diagram of the Random Hopping Dynamics of the Random Energy Model (REM) on time-scales that are exponential in the volume. These results are derived from the convergence properties of the clock process associated to the dynamics and fine properties of the simple random walk in the $n$-dimensional discrete cube.

Physicsrandom environmentsspin glassesRandom energy model010102 general mathematicsagingrandom dynamicsSimple random sample01 natural sciencesLévy processclock processExponential function[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]010104 statistics & probabilityCorrelation functionLévy processesConvergence (routing)Statistical physics0101 mathematicsCube[MATH]Mathematics [math]Phase diagram
researchProduct

Random walks in dynamic random environments and ancestry under local population regulation

2015

We consider random walks in dynamic random environments, with an environment generated by the time-reversal of a Markov process from the oriented percolation universality class. If the influence of the random medium on the walk is small in space-time regions where the medium is typical, we obtain a law of large numbers and an averaged central limit theorem for the walk via a regeneration construction under suitable coarse-graining. Such random walks occur naturally as spatial embeddings of ancestral lineages in spatial population models with local regulation. We verify that our assumptions hold for logistic branching random walks when the population density is sufficiently high.

Statistics and Probability82B43Markov processRandom walklogistic branching random walk01 natural sciences60K37 60J10 60K35 82B43010104 statistics & probabilitysymbols.namesakeMathematics::ProbabilityFOS: MathematicsLocal populationStatistical physics0101 mathematicsoriented percolationCentral limit theoremMathematicsdynamical random environmentProbability (math.PR)010102 general mathematicsRandom mediaRenormalization groupsupercritical clusterRandom walk60K37Population model60K35central limit theorem in random environmentPercolationsymbols60J10Statistics Probability and UncertaintyMathematics - ProbabilityElectronic Journal of Probability
researchProduct

Directed random walk on the backbone of an oriented percolation cluster

2012

We consider a directed random walk on the backbone of the infinite cluster generated by supercritical oriented percolation, or equivalently the space-time embedding of the ``ancestral lineage'' of an individual in the stationary discrete-time contact process. We prove a law of large numbers and an annealed central limit theorem (i.e., averaged over the realisations of the cluster) using a regeneration approach. Furthermore, we obtain a quenched central limit theorem (i.e.\ for almost any realisation of the cluster) via an analysis of joint renewals of two independent walks on the same cluster.

Statistics and ProbabilityDiscrete mathematicsdynamical random environment82B43Probability (math.PR)Random walkRandom walksupercritical clusterddc:60K3760K37 60J10 82B43 60K35Mathematics::Probability60K35Percolationcentral limit theorem in random environmentContact process (mathematics)Cluster (physics)FOS: MathematicsEmbedding60J10Statistics Probability and UncertaintyMathematics - Probabilityoriented percolationMathematicsCentral limit theorem
researchProduct

A PHASE TRANSITION FOR LARGE VALUES OF BIFURCATING AUTOREGRESSIVE MODELS

2019

We describe the asymptotic behavior of the number $$Z_n[a_n,\infty )$$ of individuals with a large value in a stable bifurcating autoregressive process, where $$a_n\rightarrow \infty $$ . The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of $$Z_n[a_n,\infty )$$ is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive pr…

Statistics and Probability[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Phase transitionrandom environmentGeneral Mathematicsmedia_common.quotation_subjectmoderate deviationslimit-theoremsmarkov-chainsStatistics::Other StatisticsBranching processdeviation inequalities92D2501 natural sciencesAsymmetry010104 statistics & probability[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]Convergence (routing)[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]Applied mathematics60C05[MATH]Mathematics [math]0101 mathematicsautoregressive process60J20lawMathematicsBranching processmedia_commonEvent (probability theory)parametersconvergenceMarkov chain010102 general mathematics[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO][MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Large deviationslarge deviations Mathematics Subject Classification (2010): 60J8060K37Autoregressive modelcellsLarge deviations theoryStatistics Probability and Uncertaintyasymmetry60F10
researchProduct

Annealed Invariance Principle for Random Walks on Random Graphs Generated by Point Processes in R-d

2016

International audience; We consider simple random walks on random graphs embedded in R-d and generated by point processes such as Delaunay triangulations, Gabriel graphs and the creek-crossing graphs. Under suitable assumptions on the point process, we show an annealed invariance principle for these random walks. These results hold for a large variety of point processes including Poisson point processes, Matern cluster and Matern hardcore processes which have respectively clustering and repulsiveness properties. The proof relies on the use the process of the environment seen from the particle. It allows to reconstruct the original process as an additive functional of a Markovian process und…

[ MATH ] Mathematics [math][MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Voronoirandom walk in random environment[MATH] Mathematics [math]Delaunay triangulationMott LawTessellationsRandom Conductances[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]RecurrenceRandom Geometric GraphsReversible Markov-ProcessesRandom Environment[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST][MATH]Mathematics [math][MATH.MATH-ST] Mathematics [math]/Statistics [math.ST]point processGabriel graphelectrical network[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Transienceenvironment seen from the particlePercolation Clustersannealed invariance principle[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR]
researchProduct